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Introduction to Large Deviations Theory

Consider an SDE with drift b(x) and small noise:

SDE

dXt = b(Xt) dt +
√
εdWt , X0 = x0.

Suppose x1, x2 are the only
stable points of the system.

Without noise, the system would
be attracted to either x1 or x2,
depending on x0.

With noise, the system may leave
the domain of attraction.
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When starting from a stable
point, noise typically leads only to
small excursions.

But eventually the system will
manage to fall into the other
state.

Questions:

How frequent are those rare transitions?

What is the most likely way in which they occur?
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Answer 1: Frequency of transitions

The frequency of those rare transitions is ≈ e−V (x1,x2)/ε, where
V (x1, x2) is the quasipotential.

Definition (Quasipotential)

V (x1, x2) := inf
T>0

inf
ψ∈C̄

x2
x1

(0,T )
ST (ψ), where

ST (ψ) :=

∫ T

0
L(ψ, ψ̇) dt and

C̄x2
x1

(0,T ) :=
{

ψ : [0,T ] → R
n |ψ(0) = x1, ψ(T ) = x2, ψ a.c.

}

.

Answer 2: Most likely transition path

The most likely way in which a transition occurs is to follow the
minimizing path ψ? : [0,T ?] → R

n in the definition of V (x1, x2).
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Question
How can one compute

inf
T>0

inf
ψ∈C̄

x2
x1

(0,T )

∫ T

0
L(ψ, ψ̇) dt ?

Approach 1: Shooting methods

Compute the Euler-Lagrange equation and solve the boundary
value ODE problem.

Problems:

hard to do in higher dimensions

may be ill-posed

Matthias Heymann The Geometric Minimum Action Method



Introduction
Main Part

Conclusions

Large Deviations Theory
Computing the Path of Maximum Likelihood
Main Results

Question
How can one compute

inf
T>0

inf
ψ∈C̄

x2
x1

(0,T )

∫ T

0
L(ψ, ψ̇) dt ?

Approach 1: Shooting methods

Compute the Euler-Lagrange equation and solve the boundary
value ODE problem.

Problems:

hard to do in higher dimensions

may be ill-posed

Matthias Heymann The Geometric Minimum Action Method



Introduction
Main Part

Conclusions

Large Deviations Theory
Computing the Path of Maximum Likelihood
Main Results

Question
How can one compute

inf
T>0

inf
ψ∈C̄

x2
x1

(0,T )

∫ T

0
L(ψ, ψ̇) dt ?

Approach 1: Shooting methods

Compute the Euler-Lagrange equation and solve the boundary
value ODE problem.

Problems:

hard to do in higher dimensions

may be ill-posed

Matthias Heymann The Geometric Minimum Action Method



Introduction
Main Part

Conclusions

Large Deviations Theory
Computing the Path of Maximum Likelihood
Main Results

Question
How can one compute

inf
T>0

inf
ψ∈C̄

x2
x1

(0,T )

∫ T

0
L(ψ, ψ̇) dt ?

Approach 1: Shooting methods

Compute the Euler-Lagrange equation and solve the boundary
value ODE problem.

Problems:

hard to do in higher dimensions

may be ill-posed

Matthias Heymann The Geometric Minimum Action Method



Introduction
Main Part

Conclusions

Large Deviations Theory
Computing the Path of Maximum Likelihood
Main Results

Question
How can one compute

inf
T>0

inf
ψ∈C̄

x2
x1

(0,T )

∫ T

0
L(ψ, ψ̇) dt ?

Approach 1: Shooting methods

Compute the Euler-Lagrange equation and solve the boundary
value ODE problem.

Problems:

hard to do in higher dimensions

may be ill-posed

Matthias Heymann The Geometric Minimum Action Method



Introduction
Main Part

Conclusions

Large Deviations Theory
Computing the Path of Maximum Likelihood
Main Results

Question
How can one compute

inf
T>0

inf
ψ∈C̄

x2
x1

(0,T )

∫ T

0
L(ψ, ψ̇) dt ?

Approach 1: Shooting methods

Compute the Euler-Lagrange equation and solve the boundary
value ODE problem.

Problems:

hard to do in higher dimensions

may be ill-posed

Matthias Heymann The Geometric Minimum Action Method



Introduction
Main Part

Conclusions

Large Deviations Theory
Computing the Path of Maximum Likelihood
Main Results

Question
How can one compute

inf
T>0

inf
ψ∈C̄

x2
x1

(0,T )

∫ T

0
L(ψ, ψ̇) dt ?

Approach 2: The String Method
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Question
How can one compute

inf
T>0

inf
ψ∈C̄

x2
x1

(0,T )

∫ T

0
L(ψ, ψ̇) dt ?

Approach 3: The Minimum Action Method (MAM)

For fixed T , discretize the integral and use a steepest-descent
method.
If x1, x2 are stable points then T = ∞, so just pick T large.

Problems:

Grid points accumulate at x1, x2,

especially if T large.

No minimizer (T ?, ψ?) exists!
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We must combine:

String Method

“geometric” approach

=⇒ stability

Minimum Action Method (MAM)

approach based on original
definition of problem

=⇒ generality

Matthias Heymann The Geometric Minimum Action Method



Introduction
Main Part

Conclusions

Large Deviations Theory
Computing the Path of Maximum Likelihood
Main Results

We must combine:

String Method

“geometric” approach

=⇒ stability

Minimum Action Method (MAM)

approach based on original
definition of problem

=⇒ generality

“Geometric Minimum Action Method” (gMAM)
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Main Results:

Reformulation of the quasipotential:

V (x1, x2) = inf
ϕ∈C̄

x2
x1

(0,1)

Ŝ(ϕ),

where Ŝ(ϕ) only depends on the curve γ(ϕ) of ϕ.

The geometric minimum action method (gMAM):
an algorithm to find the most likely transition curve

Applications to e.g. synthetic biology: A tool to detect
sources of instability in genetic networks.
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Theorem (reformulation of the quasipotential)
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inf
ψ∈C̄

x2
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ST (ψ) = inf
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x2
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(0,1)
Ŝ(ϕ), where

Ŝ(ϕ) := inf
T>0

inf
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ϕ
(0,T )

ST (ψ).
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Theorem (representations of Ŝ)

The action on the space of curves Ŝ(ϕ) has the following two
representations:

Ŝ(ϕ) =

∫ 1

0
〈ϕ′, ϑ̂(ϕ,ϕ′)〉dα =

∫ 1

0
sup
ϑ∈R

n

H(ϕ,ϑ)=0

〈ϕ′, ϑ〉dα,

where the function ϑ̂(x , y) is implicitly defined by

H(x , ϑ̂) = 0, Hθ(x , ϑ̂) = λy , λ ≥ 0,

and where H(x , θ) is the Hamiltonian associated to L(x , y), i.e.

H(x , θ) = sup
y∈Rn

(

〈y , θ〉 − L(x , y)
)

.
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Advantages of the new formulation:

existence of a minimizing curve

Ŝ(ϕ) only depends on the curve γ(ϕ) of ϕ. Thus
we may reparametrize ϕ at will;
the steepest-descent direction is perpendicular to the curve.

Other important properties of Ŝ and ϕ
?:

Ŝ is lower-semicontinuous.

If STk (ψk ) → V (x1, x2) and γ(ψk ) have bounded length
then γ(ψk ) → γ(ϕ?) in the Fréchet metric.

Transition paths will stay close to the minimizer ϕ?, with
probability ≈ 1 as ε→ 0.
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Goal:

Solve the minimization problem

V (x1, x2) = inf
ϕ∈C̄

x2
x1

(0,1)
Ŝ(ϕ).

Algorithm (gMAM):

Choose an initial curve ϕ0 ∈ C̄x2
x1

(0,1).
Iterate:

At every point on the curve, compute (λ, ϑ̂).
Move the curve into the direction of steepest descent,

∂τϕ(τ, α) = −λHθθDŜ(ϕ)

= λ2ϕ′′ − λHθxϕ
′ + HθθHx + λλ′ϕ′,

where Hx , Hθx and Hθθ are evaluated at (ϕ, ϑ̂).
Reparametrize the curve so that |ϕ′| = const .
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Ŝ(ϕ).

Algorithm (gMAM):

Choose an initial curve ϕ0 ∈ C̄x2
x1

(0,1).
Iterate:

At every point on the curve, compute (λ, ϑ̂).
Move the curve into the direction of steepest descent,

∂τϕ(τ, α) = −λHθθDŜ(ϕ)
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Ŝ(ϕ).

Matthias Heymann The Geometric Minimum Action Method



Introduction
Main Part

Conclusions

Reformulation of the Quasipotential
The Geometric Minimum Action Method (gMAM)
Examples: SDE, SPDE
Application: Synthetic Biology - The Genetic Switch

Goal:

Solve the minimization problem

V (x1, x2) = inf
ϕ∈C̄

x2
x1

(0,1)
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Ŝ(ϕ).

Matthias Heymann The Geometric Minimum Action Method



Introduction
Main Part

Conclusions

Reformulation of the Quasipotential
The Geometric Minimum Action Method (gMAM)
Examples: SDE, SPDE
Application: Synthetic Biology - The Genetic Switch

Features of the gMAM:

runtime linear in the number of gridpoints N

maximal stepsize ∆τ independent of N,
due to choice of metric and semi-implicit scheme

stable even if minimizer ϕ? has corners when passing
critical points

accuracy of order O(N−2), can be increased easily

time parametrization can be recovered (where possible)
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Example 1: Maier-Stein model (SDE)

du(t) = (u − u3 − βuv2) dt +
√
εdW1(t),

dv(t) = −(1 + u2)v dt +
√
εdW2(t).

ST (u, v) =
1
2

∫ T

0

(

(u − u3 − βuv2 − u̇)2+ (−(1 + u2)v − v̇)2
)

dt
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Example 2: Maier-Stein model (SPDE, 1D)

ut(x , t) = κuxx + u − u3 − βuv2 +
√
ε η1(x , t),

vt(x , t) = κvxx − (1 + u2)v +
√
ε η2(x , t).

ST (u, v) =
1
2

∫ T

0

∫ 1

0

(

(

κuxx + u − u3 − βuv2 − u̇
)2

+
(

κvxx − (1 + u2)v − v̇
)2

)

dx dt
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Example 3: Maier-Stein model (SPDE, 2D)

ut(x , y , t) = κ∆u + u − u3 − βuv2 +
√
ε η1(x , y , t),

vt(x , y , t) = κ∆v − (1 + u2)v +
√
ε η2(x , y , t).

ST (u, v) =
1
2

∫ T

0

∫ 1

0

∫ 1

0

(

(

κ∆u + u − u3 − βuv2 − u̇
)2

+
(

κ∆v − (1 + u2)v − v̇
)2

)

dx dy dt
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Example 3: Maier-Stein model (SPDE, 2D)

ut(x , y , t) = κ∆u + u − u3 − βuv2 +
√
ε η1(x , y , t),

vt(x , y , t) = κ∆v − (1 + u2)v +
√
ε η2(x , y , t).

β = 1
κ = 0.001

u-field
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Introduction to synthetic biology

Synthetic biology is a newly emerging subfield of biology.

DNA sequences are
designed in the computer,
“printed” as a DNA molecule,
inserted into living bacteria.

These bacteria can fulfill certain tasks such as
producing vaccines in amounts not possible otherwise,
reacting to outside stimuli in programmed ways.

“Biological engineers” are thus in need of predesigned
small genetic networks fulfilling basic tasks reliably.
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Example: The genetic switch
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The state space is R
6:

X1/2 = number of proteins A/B,
X3/4 = number of polymers Al/Bm,
X5/6 = number of plasmids whose gene sides a/b are

blocked.

The protein densities are (x1, . . . , x6) = (εX1, . . . , εX6),
where ε−1 is the system size parameter (e.g. the total
number of plasmids).

The system is modelled as a continuous-time Markov
chain with reactions Rj = (ε−1νj(x), εej), i.e.

P

(

X (t + dt) = x + εej

∣

∣

∣
X (t) = x

)

≈ ε−1νj(x) dt .
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reaction type rate state change

protein production ν1(x) = kA
1 (1 − x6) e1 = (1,0,0,0,0,0)

ν2(x) = kB
1 (1 − x5) e2 = (0,1,0,0,0,0)

protein degradation ν3(x) = kA
2 x1 e3 = (−1,0,0,0,0,0)

ν4(x) = kB
2 x2 e4 = (0,−1,0,0,0,0)

polymer formation ν5(x) = kA
3 x l

1 e3 = (−l ,0,1,0,0,0)
ν6(x) = kB

3 xm
2 e4 = (0,−m,0,1,0,0)

polymer degradation ν7(x) = kA
4 x3 e3 = (l ,0,−1,0,0,0)

ν8(x) = kB
4 x4 e4 = (0,m,0,−1,0,0)

protein binding ν9(x) = kA
5 x3(1 − x6) e3 = (0,0,−1,0,0,1)

ν10(x) = kB
5 x4(1 − x5) e4 = (0,0,0,−1,1,0)

protein unbinding ν11(x) = kA
6 x6 e3 = (0,0,1,0,0,−1)

ν12(x) = kB
6 x5 e4 = (0,0,0,1,−1,0)
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Then the system satisfies a large deviations principle, with

H(x , θ) =
12
∑

j=1

νj(x)
(

e〈θ,ej 〉 − 1
)

.

The gMAM finds the following transition path:
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Problems:
The path is hard to visualize in higher dimensions.

What are the reasons for the transition, i.e. which reactions
Rj behave most atypically?

Solution: Maximum likelihood reaction rates µj(t)

Let µj(t) be the maximum likelihood reaction frequencies
at which reaction Rj happens during a transition, i.e.

if Nε
j (t) :=

{

# of reactions Rj until time t
}

then ∀η > 0:

lim
ε→0

P

(

sup
t∈[0,T ]

∣

∣εNε
j (t) −

∫ t

0
µj(τ) dτ

∣

∣ < η
∣

∣

∣
transition

)

= 1.

log(µj/νj) = 〈ej , ϑ̂〉
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Summary:

We showed the reformulation of the quasipotential:

V (x1, x2) = inf
ϕ∈C̄

x2
x1

(0,1)
Ŝ(ϕ),

where Ŝ(ϕ) only depends on the curve γ(ϕ) of ϕ.

Based on this, we designed the geometric minimum action
method (gMAM), an algorithm to find the most likely
transition curve.

We demonstrated its performance on SDEs, SPDEs,
Markov chains.

On top of the gMAM we built a tool to detect sources of
instability in (genetic) networks.
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where Ŝ(ϕ) only depends on the curve γ(ϕ) of ϕ.

Based on this, we designed the geometric minimum action
method (gMAM), an algorithm to find the most likely
transition curve.

We demonstrated its performance on SDEs, SPDEs,
Markov chains.

On top of the gMAM we built a tool to detect sources of
instability in (genetic) networks.

Matthias Heymann The Geometric Minimum Action Method



Introduction
Main Part

Conclusions

Summary
Further Results
Future Work

Summary:

We showed the reformulation of the quasipotential:

V (x1, x2) = inf
ϕ∈C̄

x2
x1

(0,1)
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Further Results:

clean proofs of the results mentioned in this talk

properties of λ(x , y)

minimization with endpoint constraints / penalty terms:

lim
ε→0

ε logµε(B) = − inf
k=1,...,K

inf
T>0

inf
ψ∈C̄B

xk
(0,T )

ST (ψ)

lim
ε→0

ε log Eµε
e−f (Xt )/ε = − inf

k=1,...,K
inf

T>0
inf

ψ∈C̄xk
(0,T )

(

ST (ψ) + f (ψ(T ))
)

applications to mathematical finance
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